Targeting Eukaryotic Translation in Mesothelioma Cells with an eIF4E-Specific Antisense Oligonucleotide
نویسندگان
چکیده
BACKGROUND Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO) is assessed as a therapy for mesothelioma. METHODS Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and β-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment. RESULTS eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number. CONCLUSION 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity.
منابع مشابه
Understanding and Targeting the Eukaryotic Translation Initiation Factor eIF4E in Head and Neck Cancer
The eukaryotic translation initiation factor eIF4E is elevated in about 30% of human malignancies including HNSCC where its levels correlate with poor prognosis. Here, we discuss the biochemical and molecular underpinnings of the oncogenic potential of eIF4E. Studies in human leukemia specimens, and later in a mouse model of prostate cancer, strongly suggest that cells with elevated eIF4E devel...
متن کاملeIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival.
Elevated eukaryotic translation initiation factor 4E (eIF4E) function induces malignancy in experimental models by selectively enhancing translation of key malignancy-related mRNAs (c-myc and BCL-2). eIF4E activation may reflect increased eIF4E expression or phosphorylation of its inhibitory binding proteins (4E-BP). By immunohistochemical analyses of 148 tissues from 89 prostate cancer patient...
متن کاملTherapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity.
Expression of eukaryotic translation initiation factor 4E (eIF4E) is commonly elevated in human and experimental cancers, promoting angiogenesis and tumor growth. Elevated eIF4E levels selectively increase translation of growth factors important in malignancy (e.g., VEGF, cyclin D1) and is thereby an attractive anticancer therapeutic target. Yet to date, no eIF4E-specific therapy has been devel...
متن کاملTissue targeting in cancer: eIF4E's tale.
The eukaryotic translation initiation factor eIF4E is elevated in many human cancers. Tissue-specific targeting of eIF4E activity in ovarian cancer cells is achieved in cell culture and in mice by fusing a peptide corresponding to the eIF4E inhibitor, the eIF4E binding protein 1 (BP1), to an agonist of the gonadotropin receptor.
متن کاملTargeting the eukaryotic translation initiation factor 4E for cancer therapy.
The eukaryotic translation initiation factor 4E (eIF4E) is frequently overexpressed in human cancers in relation to disease progression and drives cellular transformation, tumorigenesis, and metastatic progression in experimental models. Enhanced eIF4E function results from eIF4E overexpression and/or activation of the ras and phosphatidylinositol 3-kinase/AKT pathways and selectively increases...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013